

Part 1 Pre-existing immunity to COVID-19

But first, some information about the immune system (additional slides on HERT website)

- The innate immune system, which acts immediately:
 - \circ Carries out immune surveillance for pathogens using pattern recognition receptors (PRRs).
 - Eliminates pathogens using circulating macrophages, inflammatory cytokines and natural killer (NK) cells.
 - \odot Activates the adaptive immune system if necessary.
 - However, the innate immune system is not very effective against viruses. This is when we need....
- The adaptive immune system, which provides a tailored and specific response to each pathogen after several days once the microbe has been identified. 3 different elements to the adaptive immune system:
 - B lymphocytes (B cells), which make;
 - Antibodies: classes IgG, IgA, IgM, IgE; neutralising and non-neutralising (binding) antibodies
 T lymphocytes (T cells)
- The adaptive immune system also generates an immunological memory in the form of memory cells for every pathogen encountered by the immune system.

Understanding difference between the innate and adaptive immune systems

Innate immune system: a bobby on the beat

Adaptive immune system: specialist detectives assigned to drug squad, vice, etc

And some information about the structure of coronaviruses

• Coronaviruses are spherical, enveloped respiratory viruses with positive sense single strand linear RNA.

HERT

- The term coronavirus is based on the crown-shaped spike proteins that are wrapped around the surface of these viruses.
- Coronaviruses contain four immunogenic proteins composed of spike (S), nucleocapsid (N), envelope (E) and membrane (M) proteins.
- The spike protein (S) allows the virus to infect cells; mutations in this protein help the virus escape from existing neutralising antibodies.
- The nucleocapsid is distinct from the spike protein as it contains the viral RNA, whereas the spike protein contains the receptor-binding domain (RBD), which facilitates the entry of coronaviruses into host cells.
- The RBD and nucleocapsid (N) proteins act as antigens that elicit B cell-mediated antibody responses.
- Coronaviruses mainly target epithelial cells, particularly in the respiratory tract.

The human coronavirus family

- Coronaviruses can be categorized into four subtypes: alpha- beta-, delta- and gamma-.
- There are 7 human coronaviruses:
 - 4 are common cold viruses: alpha-coronaviruses NL63 and 229E and beta-coronaviruses OC43 and HKU1. These are endemic in the human population and cause c20% of upper respiratory tract infections in adults.
 - **o** Severe Acute Respiratory Syndrome (SARS, now becoming known as SARS-CoV-1)
 - **O Middle East Respiratory Virus (MERS)**
 - \odot SARS-CoV-2: the cause of COVID-19
- Common cold viruses comprise not only coronaviruses but also rhinoviruses, adenoviruses and enteroviruses; some of these may also provide some protection from SARS-CoV-2.
- Both SARS-CoV-1 and SARS-CoV-2 use the receptor for the angiotensin-converting enzyme (ACE) 2, present in lungs, blood vessels, gut and other organs, to gain entry to the body. Given the many studies of SARS-CoV-1, it is surprising that it took so long for it to be recognised that the ACE2 receptor was the target in COVID-19.

6

SARS-CoV-1

ß

SARS-CoV-2 shares 65-82% of its genetic identity with other human coronaviruses

S∙No	Viral strains	Genus	Percent identity	 Furthermore, the fusion subunit of these common cold coronaviruses has high identity to the equivalent sequence of SARS-CoV-2.
1	HCoV-229E	α	65.04	
2	HCoV-NL63	α	65.11	
3	HCoV-HKU1	β	67.59	
4	HCoV-OC43	β	68.93	
5	MERS-CoV	β	69.58	

(Kaur N, et al. Genetic comparison among various coronavirus strains for the identification of potential vaccine targets of SARS-CoV2. Infect Genet Evol. 2021 Apr;89:104490; Zhu Z, et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic4human coronaviruses. Respir Res. 2020 Aug 6 27:21(1):224)

82.45

The official line on COVID-19

(https://www.who.int/directorgeneral/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19---3-march-2020)

- At his media briefing on 3 March 2020, the WHO Director General said:
- "This virus is not SARS, it's not MERS, and it's not influenza. It is a unique virus with unique characteristics."
- "While many people globally have built up immunity to seasonal flu strains, COVID-19 is a new virus to which no one has immunity."
- We don't even talk about containment for seasonal flu – it's just not possible. But it is possible for COVID-19.

Rachel Net h 3 2 See how true his statements were.

Cross-reactivity of coronaviruses

- Cross-reactivity: the ability of immune memory cells to react to more than one viral strain or variant.
- SARS-CoV-1 was cross-reactive with other coronaviruses and it is the job of T cell receptors to recognise foreign peptides which are similar to those encountered before.
- After SARS-CoV-1, even the WHO acknowledged that "the vulnerability of a population to a pandemic virus is related in part to the level of pre-existing immunity to the virus." (Wkly Epidemiol Rec, 2009;84(22):197-202).
- No sign of the WHO having remembered this!
- Although most of us have not been exposed to SARS-CoV-1 or MERS, we have all been exposed to common cold coronaviruses. More than 90% of the human population has antibodies to at least three of the common cold coronaviruses.
- Several immunogenic SARS-CoV-2 CTL epitopes are identical to those contained in low-pathogenicity coronaviruses circulating in the population. Thus, we suggest that some level of CTL immunity against COVID-19 may be present in some individuals prior to SARS-CoV-2 infection.
- Research on other viruses (e.g. influenza A) has shown that, generally speaking, cross-reactive immune responses may
 protect against coronavirus infection or infection severity. There is also crossreactivity to non-coronaviruses, such as the
 herpes viruses.

(Petrova G, Ferrante A, Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol. 2012;32(4):349-72; Sette A, et al. Pre-existing immunity to SARS-CoV-2: the knowns and unknowns. Nat Rev Immunol2020;20:457-8; Gorse GJ, Clin. Vaccine Immunol. 2010; 17, 1875–1880; Gao A, et al. Predicting the Immunogenicity of T cellepitopes: PFrom241V to SARS-CoV-2. bioRxiv [Preprint]. 2020 May 8 15:2020.05.14.095885 - Still a preprint)

Do we have any cross-reactivity and preexisting immunity for SARS-CoV-2?

- Yes, pre-existing memory B cells and antibodies show cross-reactivity to SARS-CoV-2: many studies (all on this slide PDF on the HERT website)
- B cells: Cross-reactive memory B cells are found but may have limited viral neutralisation properties, although they may contribute to the memory B cell pool. One study (Galson *et al*) observed 'there was also evidence of a proportion of the response arising from memory recall, which may be due to recall of B cells activated in response to previously circulating human coronaviruses". Compared with adults, children had higher frequencies of cross-reactive memory B cells.
- Antibodies: Most studies show cross-reactive antibodies from other human coronaviruses but are divided on whether the antibodies are neutralising and also whether they are even protective. One study showed that developing antibodies to a common cold coronavirus in the recent past could decrease the risk of contracting COVID-19 by 80%-90% but another showed that pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and worse outcome.

Do we have any cross-reactivity and preexisting immunity for SARS-CoV-2?

- Yes, pre-existing memory T cells show cross-reactivity to SARS-CoV-2: many studies
- Generally, these memory T cells were derived from common cold coronaviruses but long-lasting memory T cells from those who had previously recovered from SARS-CoV-1, 17 years earlier were also cross-reactive to SARS-CoV-2. (Le Bert N, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature2020;584:457-62).
- Pre-existing T cell immunity induced by circulating human alpha- and betacoronaviruses is present in young adults but largely absent in older adult subjects and their effect declines with age. In children, spike-specific T cell responses were detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses.
- Many studies have found that cross-reactive T cell responses could be directed against the membrane, spike or nucleocapsid proteins of SARS-CoV-2 in a high proportion of individuals (up to 81% or 90%).
- Cross-reactive CD4+ T cells that recognise SARS-CoV-2 are more commonly detected in peripheral blood
 of unexposed individuals compared with CD8+ T cells and have been reported in c40-60% of SARS-CoV2-unexposed individuals. Nevertheless, both cross-reactive memory CD4+ T cells and CD8+ T cells could
 be found at similar frequencies in the tonsils of unexposed individuals.
- Cross-reactive CD8+ T cells could be observed in convalescent subjects who were seronegative. In one study, CD8+ T cells specific for the nucleocapsid epitope cross-reacted with seasonal betacoronaviruses but not alphacoronaviruses.

Cross-reactive memory T cells can reduce COVID severity

- Pre-existing T-cell immunity does not seem to reduce the incidence of SARS-CoV-2 infection but it may prevent severe disease, contributing to asymptomatic or mild disease and rapid viral clearance.
- In a large international study, there was a significant inverse correlation between the levels of cross-reactive T cells against SARS-CoV-2 and mortality rates; CD4+ T cell cross-reactivity has not been reported in severe COVID patients.

Age is a factor in cross-reactivity

- People aged >65 years, who suffer disproportionately with COVID-19, had lower overall cross-reactivity compared with children, suggesting that preexisting immunity to the betacoronaviruses, which are more similar to SARS-CoV-2, may confer more protection than the alphacoronaviruses.
- The magnitude of pre-existing SARS-CoV-2 spike protein cross-reactive IgG antibodies was higher in children versus adults, had more functional responses against SARS-CoV-2 receptor binding domain (RBD) and the S1 sub-unit of the spike protein and proved able to neutralise SARS-CoV-2 infection *in vitro*.
- Children aged <5 years were found to have the highest prevalence of infection with the OC43, the betacoronavirus that is most closely related to SARS-CoV-2, suggesting a high degree of cross-reactivity in this age group.

What proportion of the population had pre-existing immunity?

- A US study detected SARS-CoV-2-reactive CD4+ T cells in 40% 60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating common cold coronaviruses and SARS-CoV-2." (Grifoni A, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell2020;181:1489-1501.e15)
- And a review article by Peter Doshi (a BMJ Editor) found at least six studies reporting T cell reactivity against SARS-CoV-2 in up to 50% of people with no known exposure to the virus (Doshi P. Covid-19: Do many people have pre-existing immunity? BMJ, 2020;370:m3563).
- In other words, about half the population would probably only develop mild or asymptomatic COVID due to cross-reactivity.
- As Marc Giradot blogged: 'If one believes in vaccines, one has to believe in acquired immunity from past viral coronavirus infections.' 'Coronavirus infections had already acted as universal vaccines'. (https://covidmythbuster.substack.com/p/most-already-had-robustimmunity?r=4jnik)

Pre-existing immunity summary

- March 2020, WHO Director General: "COVID-19 is a new virus to which no one has immunity."
- SARS-CoV-2 is 1 of 7 coronaviruses and a considerable proportion of its genetic identity is shared with the other 6 (up to 82%).
- We have all been exposed to the 5 common cold viruses. More than 90% of the human population has antibodies to at least three of the common cold coronaviruses. Cross-reactive T cell memory was still present after 17 years in those who had recovered from SARS-CoV-1 in 2003.
- Many studies show the pre-existing T-cell immunity to SARS-CoV-2. It may not reduce the incidence of SARS-CoV-2 infection but may prevent severe disease and death.
- Around 50% of the population appear to have T cells cross-reactive to SARS-CoV-2.

Studies detecting cross-reactive antibodies 1/2

- Tajuelo A, et al. Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins. Int J Mol Sci. 2022 Mar 10;23(6):2977
- McNaughton AL, et al. Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses. JCI Insight. 2022 Jul 8;7(13):e156372
- Odendahl M, et al. SARS-CoV-2-specicific humoral immunity in convalescent patients with mild COVID-19 is supported by CD4+ T-cell help and negatively correlated with Alphacoronavirus-specific antibody titer. Immunol Lett. 2022 Dec;251-252:38-46
- Dowell AC, et al. 2022. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat. Immunol. 23:40–491
- Lin CY, et al. Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host Microbe. 2022 Jan 12;30(1):83-96.e4
- Fillmore NR, et al. Recent common human coronavirus infection protects against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A Veterans Affairs cohort study. Proc Natl Acad Sci U S A. 2022 Nov 16;119(46):e2213783119
- Gouma S, et al. Health care worker seromonitoring reveals complex relationships between common coronavirus antibodies and COVID-19 symptom duration. JCI Insight. 2021 Aug 23;6(16):e150449
- Ortega, N., et al. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun 12, 4740 (2021)
- Souris M et al. <u>https://www.medrxiv.org/content/10.1101/2021.04.28.21256243v1</u> Rachel Nicoll PhD, 2024
- Fraley E, et al. Cross-reactive antibody immunity against SARS-CoV-2 in children and adults. Cell Mol Immunol. 2021 Jul;18(7):1826-1828

15

Studies detecting cross-reactive antibodies 2/2

- Song G, et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun. 2021 May 19;12(1):2938
- Majdoubi A, et al. A majority of uninfected adults show preexisting antibody reactivity against SARS-CoV-2. JCI Insight. 2021 Apr 22;6(8):e146316
- Ladner JT, et al. Epitope-resolved profiling of the SARS-CoV-2 antibody response identifies cross-reactivity with endemic human coronaviruses. Cell Rep Med. 2021 Jan 19;2(1):100189
- Wratil PR, et al. Evidence for increased SARS-CoV-2 susceptibility and COVID-19 severity related to pre-existing immunity to seasonal coronaviruses. Cell Rep. 2021 Dec 28;37(13):110169
- Anderson EM, et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell. 2021 Apr 1;184(7):1858-1864.e10
- Hicks J, et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal betacoronaviruses. J. Clin. Immunol. 2021;Jul;41(5):906-913
- Ng KW, et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science. 2020 Dec 11;370(6522):1339-1343
- Shrock E et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science 370, eabd4250 (2020)
- Klompus S, et al. https://www.medrxiv.org/content/10.1101/2020.09.01.20182220v1
- Westerhuis BM et al. Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies. medRxiv. 2020. 10.1101/2020.10.10.20210070
- Ju B, Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature | Vol 584 | 6 August 2020
- Amanat F, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020 Jul;26(7):1033-1036
- Nguyen-Contant P, et al. S Protein-Reactive IgG and Memory B Cell Production after Human SARS-CoV-2 Infection Includes Broad Reactivity to the S2 Subunit. mBio. 2020 Sep 25;11(5):e01991-20
- Khan S. https://doi.org/10.1101/2020.03.24.006544

Studies detecting cross-reactive B cells

- Tajuelo A, et al. Cross-Recognition of SARS-CoV-2 B-Cell Epitopes with Other Betacoronavirus Nucleoproteins. Int J Mol Sci. 2022 Mar 10;23(6):2977
- Embong AK, et al. Formation and Expansion of Memory B Cells against Coronavirus in Acutely Infected COVID-19 Individuals. Pathogens. 2022 Jan 29;11(2):186
- Sokal A, et al. Maturation and persistence of the anti-SARS-CoV-2 memory B cell response. Cell. 2021 Mar 4;184(5):1201-1213.e14
- Song G, et al. Cross-reactive serum and memory B-cell responses to spike protein in SARS-CoV-2 and endemic coronavirus infection. Nat Commun. 2021 May 19;12(1):2938
- Yang F, et al. Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues. Science. 2021 May 14;372(6543):738-741
- Galson JD, et al. Deep Sequencing of B Cell Receptor Repertoires From COVID-19 Patients Reveals Strong Convergent Immune Signatures. Front Immunol. 2020 Dec 15;11:605170
- Westerhuis BM et al. Severe COVID-19 patients display a back boost of seasonal coronavirus-specific antibodies. medRxiv: 2020. 10.101/2020.10.10.20210070

Studies detecting cross-reactive T cells 1/2

- Becerra-Artiles A, et al. Immunopeptidome profiling of human coronavirus OC43-infected cells identifies CD4 T cell epitopes specific to seasonal coronaviruses or cross-reactive with SARS-CoV-2. bioRxiv [Preprint]. 2022 Dec 1:2022.12.01.518643.
- Pothast CR, et al. SARS-CoV-2-specific CD4+ and CD8+ T cell responses can originate from cross-reactive CMV-specific T cells. Elife. 2022 Nov 21;11:e82050
- Antonio EC, et al. Viral immunogenic footprints conferring T cell cross-protection to SARS-CoV-2 and its variants. Front Immunol. 2022 Jul 28;13:931372.
- Jing L, et al. T cell response to intact SARS-CoV-2 includes coronavirus cross-reactive and variant-specific components. JCI Insight. 2022 Mar 22;7(6):e158126.
- Bartolo L, et al. SARS-CoV-2-specific T cells in unexposed adults display broad trafficking potential and cross-react with commensal antigens. Sci Immunol. 2022 Oct 21;7(76):eabn3127.
- Swadling L, et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature. 2022 Jan;601(7891):110-117
- Odendahl M, et al. SARS-CoV-2-specicific humoral immunity in convalescent patients with mild COVID-19 is supported by CD4+ T-cell help and negatively correlated with Alphacoronavirus-specific antibody titer. Immunol Lett. 2022 Dec;251-252:38-46.
- Dowell AC, et al. 2022. Children develop robust and sustained cross-reactive spike-specific immune responses to SARS-CoV-2 infection. Nat. Immunol. 23:40–491
- Kundu R, et al. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat Commun. 2022 Jan 10;13(1):80
- Fujii SI, et al. Association of cellular immunity with severity of COVID-19 from the perspective of antigen-specific memory T cell responses and cross-reactivity. Inflamm Regen. 2022 Nov 29;42(1):50.
- Pérez-Gómez A, et al. Deciphering the quality of SARS-CoV-2 specific T-cell response associated with disease severity, immune memory and heterologous response. Clin Transl Med. 2022 Apr;12(4):e802.
- Loyal L, et al. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science. 2021 Oct 8;374(6564):eabh1823
- Lineburg KE, et al. CD8+ T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity. 2021 May 11;54(5):1055-1065.e5
- Cassaniti I, et al. SARS-CoV-2 specific T-cell immunity in COVID-19 convalescent patients and unexposed controls measured by ex vivo ELISpot assay. Clin Microbiol Infect. 2021 Jul;27(7):1029-1034.
- Casado JL, et al. SARS CoV-2 infections in healthcare workers with a pre-existing T-cell response: a prospective cohort study. Clin Microbiol Infect. 2021 Jun;27(6):916.e1-916.e4.
- Ahmadi E, et al. SARS-CoV-2 spike protein displays sequence similarities with paramyxovirus surface proteins; a bioinformatics study. PLoS One. 2021 Dec 2;16(12):e0260360
- Nelde A, et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021 Jan;22(1):74-85
- Ogbe A, et al. T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nat Commun. 2021 Apr 6;12(1):2055.
- Dykema AG, et al. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J Clin Invest. 2021 May 17;131(10):e146922.
- Low JS, et al. Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science. 2021 Jun 18;372(6548):1336-1341
- Dijkstra JM, et al. Most Japanese individuals are genetically predisposed to recognize an immunogenic protein fragment shared between COVID-19 and common cold coronaviruses. F1000Res. 2021 Mar 10;10:196
- Sagar M, et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J Clin Invest. 2021 Jan 4;131(1):e143380
- Schulien I, et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8+ T cells. Nat Med. 2021 Jan;27(1):78-85
 - Nelde A, SARS-CoV-2 T-cell epitopes define heterologous and COVID-19-induced T-cell recognition https://www.researchsguare.com/article/rs-35331/v1

Studies detecting cross-reactive T cells 2/2

- Gallais F, etr al. Intrafamilial Exposure to SARS-CoV-2 Associated with Cellular Immune Response without Seroconversion, France. Emerg Infect Dis. 2021 Jan;27(1):113–21
- Echeverría G, et al. Pre-existing T-cell immunity to SARS-CoV-2 in unexposed healthy controls in Ecuador, as detected with a COVID-19 Interferon-Gamma Release Assay. Int J Infect Dis. 2021 Apr;105:21-25
- Lehmann AA, et al. Deconvoluting the T Cell Response to SARS-CoV-2: Specificity Versus Chance and Cognate Cross-Reactivity. Front Immunol. 2021 May 28;12:635942.
- Humbert M, et al. Functional SARS-CoV-2 cross-reactive CD4+ T cells established in early childhood decline with age. Proc Natl Acad Sci U S A. 2023 Mar 21;120(12):e2220320120
- Mahajan S, et al. Immunodominant T-cell epitopes from the SARS-CoV-2 spike antigen reveal robust pre-existing T-cell immunity in unexposed individuals. Sci Rep. 2021 Jun 23;11(1):13164.
- Tan CCS, et al. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses. Infect Genet Evol. 2021 Nov;95:105075.
- Quiros-Fernandez I, et al. Immunogenic T cell epitopes of SARS-CoV-2 are recognized by circulating memory and naïve CD8 T cells of unexposed individuals. EBioMedicine. 2021 Oct;72:103610.
- da Silva Antunes R, et al. Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and Health Care Workers. J Infect Dis. 2021 Jul 2;224(1):70-80
- Waterlow NR, et al. How immunity from and interaction with seasonal coronaviruses can shape SARS-CoV-2 epidemiology. Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):e2108395118
- Papayanni PG. et al. Vaccinated and Convalescent Donor–Derived Severe Acute Respiratory Syndrome Coronavirus 2–Specific T Cells as Adoptive Immunotherapy for High-Risk Coronavirus Disease 2019 Patients. Clin. Infect. Dis. 2021;73:2073–2082.
- Saini SK, et al. SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8+ T cell activation in COVID-19 patients. Sci Immunol. 2021 Apr 14;6(58):eabf7550
- Niessl J. et al. Identification of resident memory CD8 + T cells with functional specificity for SARS-CoV-2 in unexposed oropharyngeal lymphoid tissue. Sci. Immunol. 2021;6:eabk0894.
- Lipsitch M, et al. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat Rev Immunol. 2020 Nov;20(11):709-713
- Weiskopf D, et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci Immunol. 2020 Jun 26;5(48):eabd2071
- Grifoni A, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell2020;181:1489-1501.e15
- Mateus J, et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science2020
- Sekine T et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020 Oct 1;183(1):158-168.e14
- Le Bert N, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature2020;584:457-62
- Saletti G, et al. 2020. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci. Rep. 10:21447
- Bacher P, et al. Low-Avidity CD4+ T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19. Immunity. 2020 Dec 15;53(6):1258-1271.e5.
- Lee CH, et al. Potential CD8+ T Cell Cross-Reactivity Against SARS-CoV-2 Conferred by Other Coronavirus Strains. Front Immunol. 2020 Nov 5;11:579480.
- Stefano GB, Kream RM. Convalescent Memory T Cell Immunity in Individuals with Mild or Asymptomatic SARS-CoV-2 Infection May Result from an Evolutionarily Adapted Immune Response to Coronavirus and the 'Common Cold'. Med Sci Monit. 2020 Nov 26;26:e929789.
- Woldemeskel BA, et al. Healthy donor T cell responses to common cold coronaviruses and SARS-CoV-2. J Clin Invest. 2020 Dec 1;130(12):6631-6638.
- Braun J, et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020 Nov;587(7833):270-274
- Glinsky GV, https://doi.org/10.1101/2020.10.03.20206151

Reviews of studies showing pre-existing immunity

- Murray SM, et al. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol. 2022 Dec 20:1–13.
- Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022 Feb;23(2):186-193.
- Netea MG, et al. Natural resistance against infections: focus on COVID-19. Trends Immunol. 2022 Feb;43(2):106-116.
- Pal N, et al. Current updates on adaptive immune response by B cell and T cell stimulation and therapeutic strategies for novel coronavirus disease 2019 (COVID-19) treatment. Heliyon. 2021 Apr;7(4):e06894.
- Doshi P. Covid-19: Do many people have pre-existing immunity? BMJ 2020;370:m3563
- King EM, https://www.bmj.com/content/370/bmj.m3563/rr-6
- Spelsberg A, https://www.bmj.com/content/370/bmj.m3563/rr-10
- Kellam P, Barclay W. The dynamics of humoral immune responses following SARS-CoV-2 infection and the potential for reinfection. J Gen Virol. 2020;101:791–797 20